Wednesday, 23 November 2011

Internet

The Internet is a global system of interconnected computer networks that use the standard Internet Protocol Suite (TCP/IP) to serve billions of users worldwide. It is a network of networks that consists of millions of private, public, academic, business, and government networks, of local to global scope, that are linked by a broad array of electronic, wireless and optical networking technologies. The Internet carries a vast range of information resources and services, such as the inter-linked hypertext documents of the World Wide Web (WWW) and the infrastructure to support electronic mail.
Most traditional communications media including telephone, music, film, and television are reshaped or redefined by the Internet, giving birth to new services such as Voice over Internet Protocol (VoIP) and IPTV. Newspaper, book and other print publishing are adapting to Web site technology, or are reshaped into blogging and web feeds. The Internet has enabled or accelerated new forms of human interactions through instant messaging, Internet forums, and social networking. Online shopping has boomed both for major retail outlets and small artisans and traders. Business-to-business and financial services on the Internet affect supply chains across entire industries.
The origins of the Internet reach back to research of the 1960s, commissioned by the United States government in collaboration with private commercial interests to build robust, fault-tolerant, and distributed computer networks. The funding of a new U.S. backbone by the National Science Foundation in the 1980s, as well as private funding for other commercial backbones, led to worldwide participation in the development of new networking technologies, and the merger of many networks. The commercialization of what was by the 1990s an international network resulted in its popularization and incorporation into virtually every aspect of modern human life. As of 2009, an estimated one-quarter of Earth's population uses the services of the Internet.
The Internet has no centralized governance in either technological implementation or policies for access and usage; each constituent network sets its own standards. Only the overreaching definitions of the two principal name spaces in the Internet, the Internet Protocol address space and the Domain Name System, are directed by a maintainer organization, the Internet Corporation for Assigned Names and Numbers (ICANN). The technical underpinning and standardization of the core protocols (IPv4 and IPv6) is an activity of the Internet Engineering Task Force (IETF), a non-profit organization of loosely affiliated international participants that anyone may associate with by contributing technical expertise.
Technology
Protocols
The communications infrastructure of the Internet consists of its hardware components and a system of software layers that control various aspects of the architecture. While the hardware can often be used to support other software systems, it is the design and the rigorous standardization process of the software architecture that characterizes the Internet and provides the foundation for its scalability and success. The responsibility for the architectural design of the Internet software systems has been delegated to the Internet Engineering Task Force (IETF).[13] The IETF conducts standard-setting work groups, open to any individual, about the various aspects of Internet architecture. Resulting discussions and final standards are published in a series of publications, each called a Request for Comments (RFC), freely available on the IETF web site. The principal methods of networking that enable the Internet are contained in specially designated RFCs that constitute the Internet Standards. Other less rigorous documents are simply informative, experimental, or historical, or document the best current practices (BCP) when implementing Internet technologies.
The Internet Standards describe a framework known as the Internet Protocol Suite. This is a model architecture that divides methods into a layered system of protocols (RFC 1122, RFC 1123). The layers correspond to the environment or scope in which their services operate. At the top is the Application Layer, the space for the application-specific networking methods used in software applications, e.g., a web browser program. Below this top layer, the Transport Layer connects applications on different hosts via the network (e.g., client–server model) with appropriate data exchange methods. Underlying these layers are the core networking technologies, consisting of two layers. The Internet Layer enables computers to identify and locate each other via Internet Protocol (IP) addresses, and allows them to connect to one-another via intermediate (transit) networks. Lastly, at the bottom of the architecture, is a software layer, the Link Layer, that provides connectivity between hosts on the same local network link, such as a local area network (LAN) or a dial-up connection. The model, also known as TCP/IP, is designed to be independent of the underlying hardware which the model therefore does not concern itself with in any detail. Other models have been developed, such as the Open Systems Interconnection (OSI) model, but they are not compatible in the details of description, nor implementation, but many similarities exist and the TCP/IP protocols are usually included in the discussion of OSI networking.
The most prominent component of the Internet model is the Internet Protocol (IP) which provides addressing systems (IP addresses) for computers on the Internet. IP enables internetworking and essentially establishes the Internet itself. IP Version 4 (IPv4) is the initial version used on the first generation of the today's Internet and is still in dominant use. It was designed to address up to ~4.3 billion (109) Internet hosts. However, the explosive growth of the Internet has led to IPv4 address exhaustion which has enter its final stage in 2011,[14] when the global address allocation pool was exhausted. A new protocol version, IPv6, was developed in the mid 1990s which provides vastly larger addressing capabilities and more efficient routing of Internet traffic. IPv6 is currently in growing deployment around the world, since Internet address registries (RIRs) began to urge all resource managers to plan rapid adoption and conversion.[15]
IPv6 is not interoperable with IPv4. It essentially establishes a parallel version of the Internet not directly accessible with IPv4 software. This means software upgrades or translator facilities are necessary for networking devices that need to communicate on both networks. Most modern computer operating systems already support both versions of the Internet Protocol. Network infrastructures, however, are still lagging in this development. Aside from the complex array of physical connections that make up its infrastructure, the Internet is facilitated by bi- or multi-lateral commercial contracts (e.g., peering agreements), and by technical specifications or protocols that describe how to exchange data over the network. Indeed, the Internet is defined by its interconnections and routing policies.

No comments:

Post a Comment